Vladimir M. Shalaev Purdue University

Transforming Light with Metamaterials

(with A.V. Kildishev, W. Cai, V.P. Drachev, S. Xiao, U. Chettiar)

OUTLINE

PURDUE

College

^{of}Engineering

- Metamagnetics across entire visible (from red to blue)
- Demonstration of "double-negative" MM (with both ϵ & μ < 0) in the visible: n = -0.8 at 725nm; and "single-negative" n=-0.3 at 580 nm
- Nonlinear Optics with Metamaterials (see also presentation by Natalia Litchinitser)
- Optical Cloaking & Transformation Optics

Meta-Magnetics: from 10GHz to 200THz

(c)

Terahertz magnetism

College

^{of}Engineering

Purdue

- a) Yen, et al. ~ 1THz (2-SRR) 2004 Katsarakis, et al (SRR – 5 layers) - 2005
- b) Zhang et al ~50THz (SRR+mirror) 2005
- c) Linden, et al. 100THz (1-SRR) -2004
- d) Enkrich, et al. 200THz (u-shaped)-2005

2004-2005 years: from 10 GHz to 200 THZ

2007: artificial magnetism across entire visible

College

PURDUE

Birck Nanotechnology Center

Metamagnetics with Rainbow Colors

PURDUE ^{of}Engineering

Visible Meta-Magnetics: from Red to Blue

 λ_m as a function of strip width "w": experiment vs. theory Negligible saturation effect on size-scaling

IVERSIT

Negative Refractive Index in Optics

Negative Refractive Index in Optics: State of the Art

College of Engineering

PURDUE

Year and Research group	1st time posted and publication	Refractive index, n '	Wavelength λ	Figure of Merit F=/n]/n "	Structure used
2005:					
Purdue	April 13 (2005) arXiv:physics/0504091 Opt. Lett. (2005)	-0.3	1.5 µm	0.1	Paired nanorods
UNM & Columbia	April 28 (2005) arXiv:physics/0504208 Phys. Rev. Lett. (2005)	-2	2.0 μm	0.5	Nano-fishnet with round voids
<u>2006:</u>					
UNM & Columbia	J. of OSA B (2006)	-4	1.8 µm	2.0	Nano-fishnet with round voids
Karlsruhe & ISU	OL. (2006)	-1	1.4 µm	3.0	Nano-fishnet
Karlsruhe & ISU	OL (2006)	-0.6	780 nm	0.5	Nano-fishnet
Purdue	MRS Bulletin (2008)	-0.8 -0.6	725nm 710nm	1.1 0.6	Nano-fishnet
Purdue	In preparation (2009)	-0.25	580nm	0.3	Nano-fishnet

CalTech: negative refraction in the visible for MIM waveguide SPPs (2007)

S. Zhang, et al., PRL (2005)

Sample A: Double Negative NIM (n'=-0.8, FOM=1.1, at 725 nm) Sample B: Single Negative NIM (n'=-0.25, FOM=0.3, at 580 nm)

Sample A. period- E: 250 nm; H: 280 nm

College

^{of}Engineering

PURDUE

MRS Bulletin (2008)

with Alex K. Popov

Nonlinear Optics of NIMs: Optical Parametric Amplification (OPA)

• OPA: compensating losses with OPA (with $\chi^{(2)}$ – Opt. Lett. 2006; with $\chi^{(3)}$ – OL 2007)

A.K. Popov and V.M. Shalaev - OL 31, 2169 (2006) and OL (2007)

Laser Physics Letts **3**, 293 (2006); APB **84**, 131 (2006); JOSA B **23**, 535 (2006) (with Gabitov, Litchintser, et al)

early work on SHG: **Kivshar**, et al; Zakhidov et al (2005) SHG Experiment in SRRs: Klein et al, Science 313, 502 (2006)

Three-dimensional Optical Metamaterials with a Negative Refractive Index

Schematic and Sem image of 21-layer fishnet, p= 860nm, a= 565,b= 265nm

College

^{of}Engineering

Purdue

Sem image of 3D fishnet NIM prism

Stacking: alternating layers 50 nm of MgF2 and 30 nm of Ag Valentine, et al., Nature (2008)

also work by the Wegner & Giessen groups

3D NIMs enable new means to compensate for loss – OPA!

Optical Parametric Amplification (OPA) in NIMs

$$\boldsymbol{\omega}_3 = \boldsymbol{\omega}_1 + \boldsymbol{\omega}_2 \quad (n_1 < 0, n_2, n_3 > 0)$$

College of Engineering

Purdue

$$S_3$$
 - Control Field (pump)

 $\eta_{1a} = |a_1(z)/a_{1L}|^2, \eta_{1g} = |a_1(z)/a_{20}|^2, \eta_{2g} = |a_2(z)/a_{1L}|^2 \qquad g = (\sqrt{\omega_1 \omega_2} \sqrt[4]{\varepsilon_1 \varepsilon_2/\mu_1 \mu_2})(8\pi/c)\chi^{(2)}h_3$

Manley-Rowe Relations:

$$\frac{d}{dz} \left(\frac{S_1}{\hbar \omega_1} - \frac{S_2}{\hbar \omega_2} \right) = 0$$

College

^{of}Engineering

Backward waves in NIMs -> Distributed feedback & cavity-like amplification and generation

 $a_1L = 1, a_2L = 1/2$

$$g = \left(\sqrt{\omega_{1}\omega_{2}} \sqrt[4]{\varepsilon_{1}\varepsilon_{2}} / \mu_{1}\mu_{2}\right) \left(8\pi/c\right) \chi^{(2)}h_{3} \qquad \eta_{1a} = \left|a_{1}(z)/a_{1L}\right|^{2}, \eta_{1g} = \left|a_{1}(z)/a_{20}\right|^{2}$$

Resonances in output amplification and DFG

- OPA-Compensated Losses
- Cavity-free (no mirrors) Parametric Oscillations
- Generation of Entangled Counter-propagating LH and RH photons

Optical Cloaking & Transformation Optics

VMS, Science, Oct. 17, 2008

Fermat: $\delta \int n dI = 0$ $n = \sqrt{\epsilon(r)\mu(r)}$

College

^{of}Engineering

PURDUE

"curving" optical space

Straight field line in Cartesian coordinate

Distorted field line in distorted coordinate

Spatial profile of ϵ & μ tensors determines the distortion of coordinate

Seeking for profile of $\varepsilon \& \mu$ to make light avoid particular region in space — optical cloaking Pendry et al. Science

Pendry et al., Science, 2006 Leonhard, Science, 2006 Greenleaf et al (2003) L. S. Dolin, Izv. VUZ, 1961

Transformation Optics and Cloaking

ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИИ

College

of Engineering

TOM IV, № 5

ie

9.3

URDUF

РАДИОФИЗИКА

О ВОЗМОЖНОСТИ СОПОСТАВЛЕНИЯ ТРЕХМЕРНЫХ ЭЛЕ МАГНИТНЫХ СИСТЕМ С НЕОДНОРОДНЫМ АНИЗОТРО ЗАПОЛНЕНИЕМ

Л.С.Долин

Показано, что, основываясь на инвариантности уравнений Макса относительно определенного вида преобразований метрики простравс проницаемостей среды, можно исследовать трехмерные системы с родным аннзогропным заполнением путем их сопоставления с други лее простыми трехмерными системами. $\| \varepsilon_{ik} \| = \| \mu_{ik} \| = \begin{vmatrix} 0 & \frac{1}{dr(R)/dR} & 0 \\ 0 & 0 & \frac{1}{dr(R)/dR} \end{vmatrix}$ Как видно, при условии (4) $\varepsilon_{ik} = \mu_{ik} \xrightarrow{r \to \infty} 1$. Плоская волн щая из бесконечности на неоднородность с параметрами (5) через нее без искажений.

педовательский радиофизический институт при Горьковском университете

Поступила в редакцию 11 марта 1961 г.

POSSIBILITY OF COMPARISON OF THREE - DIMENSIONAL ECTROMAGNETIC SYSTEMS WITH NONUNIFORM ANISOTROPIC FILLING

L. S. Dolin

as shown that it is possible to investigate three-dimensional systems with anisotropic filling by comparison them with other, more simple three-dimen ems. The examination is made basing on an invariance of Maxwels equations the certain type of transformation of space metric and medium permeability nivity.

Camouflaging bumps on a metal surface

College

of Engineering

Purdue

J. Li, J. B. Pendry, "Hiding under the carpet: a new strategy for cloaking"

D. Smith, et al – MW experiment (Science -2009) Zhang et al – optical experiment(Nature Materials -2009)

Purdue

Optical Cloaking with Metamaterials: Can Objects be Invisible in the Visible?

[GHz-cloak: Duke team]

Nature Photonics (April, 2007)

Structure of optical cloak: "Round brush"

College of Engineering

PURDUE

metal needles embedded in dielectric host

Cai, et al., Nature Photonics, 1, 224 (2007

Unit cell:

Flexible control of ε_r ; Negligible perturbation in ε_{θ}

Cloaking performance: Field mapping movies

Example:

College

^{of}Engineering

PURDUE

Non-magnetic cloak @ 632.8nm with silver wires in silica

Wavelength Multiplexing Cloak

Combination of techniques:

- Virtual inner boundary
- Dispersion control
- Active medium or EIT?

$$\left(\frac{\partial \varepsilon_{z}}{\partial \omega}\right) \left(\frac{\partial \mu_{r}}{\partial \omega}\right) < 0$$

Kildishev, et al (NJP, 2008)

Physical boundaries the cloaking device

Virtual inner boundary for different wavelengths

Broadband Optical Cloaking in Tapered Waveguides

I.I. Smolayninov, V.N. Smolyaninova, A.V. Kildishev and V.M. Shalaev

(PRL, May 29, 2009)

Emulating Anisotropic Metamaterials with Tapered Waveguides

College

^{of}Engineering

URDUF

Broadband Optical Cloak in Tapered Waveguide

College ^{of}Engineering

PURDUE

Fermat Principle and Waveguide Cloak

College

^{of}Engineering

JURDUF

College of Engineering

PURDUE

College

of Engineering

Kildishev, VMS (OL, 2008); VMS, Science <u>322</u>, 384 (2008)

Highlights of Purdue "Meta-Research"

College

^{of}Engineering

Purdue Photonic Metamaterials

- (a) 1-st optical negative-index MM (1.5 µm; 2005)
- (b) Negative index MM at shortest λ (~580nm; 2009)
- (c) 1^{-st} magnetic MM across entire visible (2007)

Transformation Optics with MMs: Flat hyperlens, concentrator, and cloak

PURDUE UNIVERSITY

Cast of Characters:

